

1 Using a screwdriver, you try to remove a screw from a piece of furniture, but can't get it to turn. To increase the chances of success you should us a screwdriver that

A is longer
B is shorter
C has a narrower handle (D) has a wider handle

2 A constant net torque is applied to an object. Which one of the following will not be constant?

A angular acceleration
B angular velocity
C moment of inertia
D center of gravity

Torque and Angular Acceleration

$\mathrm{F}_{\mathrm{t}}=\mathrm{ma}_{\mathrm{t}}$

$$
F_{t} r=m a_{t}(r)
$$

$$
\uparrow=m a_{t} r
$$

$$
d V=r d r d \theta d z
$$

$$
\left.\int_{0}^{n} \int_{0}^{2 \pi} \frac{1}{4} r^{4} \rho\right|_{0} ^{k} d \theta d z
$$

$(d m)=p r d r d \theta d z$

$$
\begin{aligned}
& \int_{0}^{h} \int_{0}^{2 \pi} \frac{1}{4} R^{4} \rho d \theta d z \\
& \int_{0}^{n} \frac{1}{4} R^{4} p^{-6} \int_{0}^{2 \pi} d z \\
& \int_{0}^{h} \frac{1}{4} R^{u} \rho 2 \pi d z \\
& \left.\frac{1}{4} R^{4} \rho 2 \pi z\right|_{0} ^{h} \\
& I=\frac{1}{4} R^{4}(\rho)^{2 \pi h} \quad \rho=\frac{M}{V} \\
& =2 R^{2} \frac{M}{\pi} \quad \rho=\frac{M}{\pi r^{2} h} \\
& =\frac{1}{2} R^{2} m
\end{aligned}
$$

3 Two rigid objects shown have the same mass, radius, and angular speed. If the same braking torque is applied to each, which takes longer to stop?

A A
B B
C Have No Clue

$$
I=\frac{1}{2} m i^{2}
$$

A solid frictionless cylindrical reel of mass $\mathrm{M}=3.00 \mathrm{~kg}$ and radius $\mathrm{R}=0.400 \mathrm{~m}$ is used to draw water from a well. A bucket of mass $\mathrm{m}=2.00 \mathrm{~kg}$ is attached to a cord that is wrapped around the cylinder.
(a) Find the tension T in the cord and acceleration a of the bucket.
(b) If the bucket starts from rest at the top of the well and falls for 3.00 s before hitting the water, how far does it fall?
(a)

$$
I=\text { moment of taertia }
$$

(b)
(b) (b) Bucket

(c)
$\sum \tau=I \alpha$
$\sum \tau=\frac{1}{2} m r^{2} \alpha$
$\stackrel{?}{T} R=\frac{1}{2} m r^{2} \dot{\alpha}$
$T R=\frac{1}{2} m r^{2} \frac{a_{T}}{r}$

